La ley de Snell

La ley de Snell (también llamada ley de Snell-Descartes) es una fórmula utilizada para calcular el ángulo de refracción de la luz al atravesar la superficie de separación entre dos medios de propagación de la luz (o cualquier onda electromagnética) con índice de refracción distinto. El nombre proviene de su descubridor, el matemático holandés Willebrord Snel van Royen (1580-1626).

La denominaron «Snell» debido a su apellido pero le pusieron dos «l» por su nombre Willebrord el cual lleva dos «l».

La misma afirma que la multiplicación del índice de refracción por el seno del ángulo de incidencia respecto a la normal es constante para cualquier rayo de luz incidiendo sobre la superficie separatriz de dos medios. Es decir, el componente del índice de refracción paralelo a la superficie es constante. Aunque la ley de Snell fue formulada para explicar los fenómenos de refracción de la luz se puede aplicar a todo tipo de ondas atravesando una superficie de separación entre dos medios en los que la velocidad de propagación de la onda varíe.

La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consiste en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser un láser o también diodo led.

Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de la radio y superiores a las de un cable convencional. Son el medio de transmisión por cable más avanzado, al ser inmune a las interferencias electromagnéticas, y también se utilizan para redes locales donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

Cuando el ángulo de incidencia es mayor o igual al ángulo crítico, la luz no puede refractarse y se refleja totalmente en la frontera. Los ángulos del dibujo corresponden a la frontera aire-agua. los rayos dibujados en rojo están en reflexión total.

Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.

Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo límite.

Ventajas
Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del GHz).
Pequeño tamaño, por lo tanto ocupa poco espacio.
Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional.
Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo…
Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía lumínica en recepción, además, no irradia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad.
No produce interferencias.
Insensibilidad a las señales parásitas, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica.
Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km utilizando amplificadores láser.
Gran resistencia mecánica, lo que facilita la instalación.
Resistencia al calor, frío y corrosión.
Facilidad para localizar los cortes gracias a un proceso basado en la reflectometria, lo que permite detectar rápidamente el lugar donde se hará la reparación de la avería, simplificando la labor de mantenimiento.
Factores ambientales.

Desventajas
A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:

La alta fragilidad de las fibras.
Necesidad de usar transmisores y receptores más costosos.
Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable.
No puede transmitir electricidad para alimentar repetidores intermedios.
La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica.
La fibra óptica convencional no puede transmitir potencias elevadas.
No existen memorias ópticas.
La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.
Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.
Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.